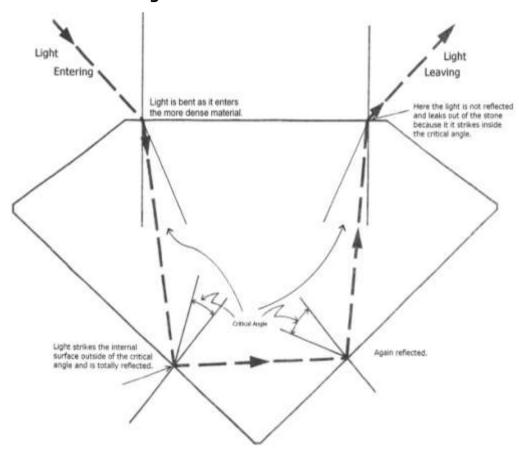

Common Calibrated Stone Sizes (mm)


Square:	1.6	Oval:	4 x 3
oquu. o.	1.8	• • • • • • • • • • • • • • • • • • • •	5 x 3
	2.0		5 x 3.5
	2.2		5 x 4
	2.4		6 x 4
	2.5		7 x 5
	2.6		8 x 6
	2.8		
	3.0	Pear:	4 x 3
			5 x 3
Marquise:	4 x 2		5 x 3.5
	4.5 x 2.5		5 x 4
	5 x 2.5		6 x 4
	5 x 3		7 x 5
	6 x 3		

Cut Terminology

Light Behavior in a Well Cut Stone

Light Behavior in a Poorly Cut Stone

Diagram of a Round Brilliant Cut

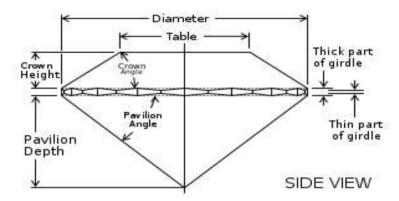
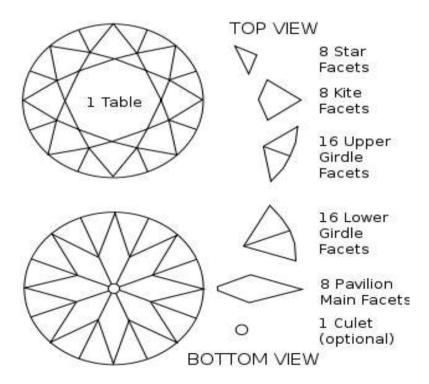



Figure 1: Diamond Proportions

Cutting Standards for Round Brilliant Diamonds of Different Origins

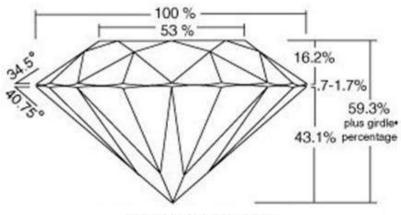
	Crown	Pavilion	Table	Crown	Pavilion	Brilliance
Benchmark	Height	Depth	Diameter	Angle	Angle	Grade
American Standard	16.20%	43.10%	53.00%	34.5°	40.75°	99.50%
Practical Fine Cut	14.40%	43.20%	56.00%	33.2°	40.8°	99.95%
Scandinavian Cut	14.60%	43.10%	57.50%	34.5°	40.75°	99.50%
Eulitz Brilliant	14.45%	43.15%	56.50%	33.36°	40.48°	100%
Ideal Brilliant	19.20%	40.00%	56.10%	41.1°	38.7°	98.40%
Parker Brilliant	10.50%	43.40%	55.90%	25.5°	40.9°	Low
AGA	14.0-16.3%	42.8-43.2%	53-59%	34.0-34.7°	N/A	100%

Note: Eulitz Brilliant cut allows 1.5% girdle thickness.

Fancy Cut - Length to Width Ratio:

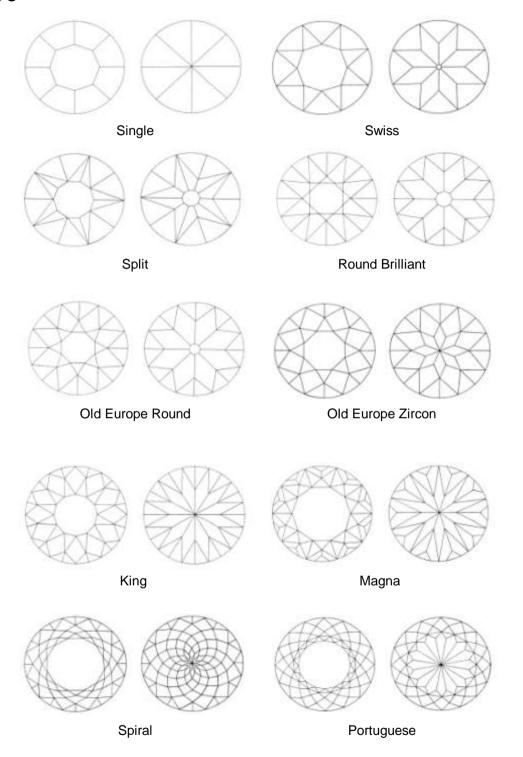
Emerald H	leart			Oval	F
.35 - 1.65 to 1 1 - 1	1.2 to 1			1.3 - 1.7 to 1	1.35 -
		Marquise]		
		1.7 - 2.15 to 1			

Princess	Radiant	Assher	Cushion
1 - 1.15 to 1	1 - 1.35 to 1	1 - 1.15 to 1	ı 1 - 1.35 to 1

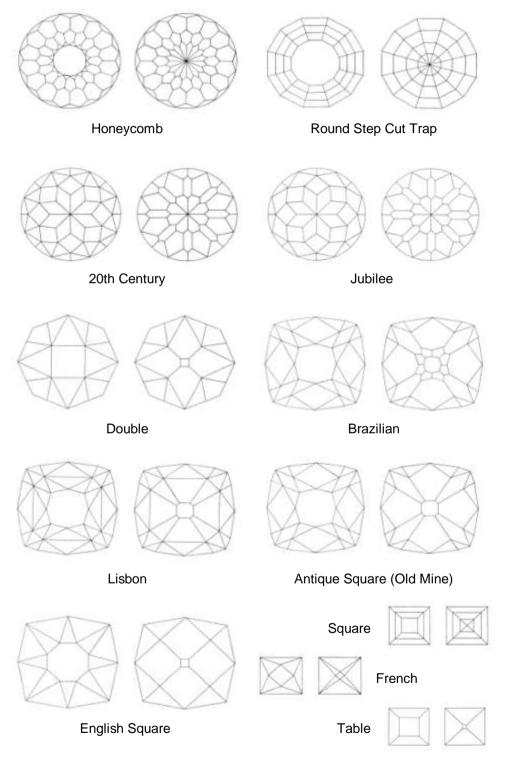


The Tolkowsky Ideal Cut Proportion

In 1919, Marcel Tolkowsky published <u>Diamond Design</u>. He systematically analyzed the optics of a diamond and estimated the best proportion for cutting round brilliant diamonds. With minor changes, today's standards for "ideal cut" diamonds are based on Tolkowsky's book.


Tolkowsky suggested that the diamond proportions pictured below will produce a diamond with the best brilliance, fire and scintillation.

This is a balancing act. Striving for the best in one of those qualities may compromise another. Brilliance refers to how much light is reflected back out of the crown and table of a stone. Fire refers to the flashes of different colors seen in the reflections due to the breaking up of light into its component colors as it passes through the stone. Scintillation refers to the blinking of light seen as the stone is moved relative to the source of light.



Tolkowsky Ideal Cut

